1,187 research outputs found

    Spectroscopy in the 10 keV to 10 MeV range

    Get PDF
    Spectral lines in the 10 keV to 1 MeV range carry information of fundamental importance on many astronomical objects. Since the lines are directly related to specific physical processes this information is model independent and gives the physical conditions in the objects. At the sensitivities achieved to date, approximately 0.0001 to 0.001 phsq cm. sec for steady sources and approximately 0.01 to 1 ph/sq cm sec for transient sources, lines were detected from the galactic center, gamma-ray bursts and transients, X-ray pulsators, the Crab pulsar and solar flares. Future instruments with a factor of approximately 100 sensitivity improvement will allow detailed spectroscopic study of these classes of objects as well as supernova remnants, active galaxies and the interstellar medium. This sensitivity improvement can be obtained through the use of detector technology already proven in balloon and satellite instruments

    HEAO-1 observations of gamma ray bursts

    Get PDF
    A search of data from the High Energy X-Ray and Low Energy Gamma Ray Experiment on HEAO-1 uncovered 14 gamma ray bursts. Nine of these events are reported for the first tiome. Except for the faintest events, all of the bursts detected by this experiment have been measured above an MeV, thereby confirming the hard spectral character of gamma ray burst spectra reported by SMM. Results give a burst rate of at least 105 per year above 6 times 10 to the minus 7th power ergs, which is consistent with previous measurements of burst frequency

    A-4 scientific results

    Get PDF
    Observations of galactic sources, extragalactic sources and gamma bursts with the A-4 instrument at energy 1 energies of between 0.1 to 10 MeV are discussed. Aximuthal scans are presented. The Crab Nebula and its spectrum and the spectrum of Cygnus Z-1 are described

    The Statistics of the BATSE Spectral Features

    Get PDF
    The absence of a BATSE line detection in a gamma-ray burst spectrum during the mission's first six years has led to a statistical analysis of the occurrence of lines in the BATSE burst database; this statistical analysis will still be relevant if lines are detected. We review our methodology, and present new simulations of line detectability as a function of the line parameters. We also discuss the calculation of the number of ``trials'' in the BATSE database, which is necessary for our line detection criteria.Comment: 5 pages, 2 figures, AIPPROC LaTeX, to appear in "Gamma-Ray Bursts, 4th Huntsville Symposium," eds. C. Meegan, R. Preece and T. Koshu

    Spectrum of the gamma-ray diffuse component observed from HEAO-1

    Get PDF
    The spectrum of the diffuse X and gamma ray background was measured between 15 keV and 4 MeV with the scintillation detectors aboard the HEAO 1 satellite. The apertures of the detectors were modulated on time scales of hours and the difference in counting rates measured the diffuse component flux. The observed spectrum is presented and compared with other measurements. At least two components are indicated, one below -100 keV and the other above. Possible origins are discussed

    Spectra and positions of galactic gamma-ray sources

    Get PDF
    The UCSD/MIT Hard X-Ray and Low Energy Gamma-Ray Experiment aboard HEAO-1 scanned the galactic center region during three epochs in 1977 and 1978 from 13 to 180 keV. The results are presented from the scanning epoch of 1978 September. Twenty-two known 2 to 10 keV source positions were necessary for an acceptable fit to the data. The spectra of the 16 strongest, least confused sources are all consistent with power laws with photon spectral indices ranging from 2.1 to 7.2. Acceptable fits to thermal bremsstrahlung models are also possible for most sources. No one source in this survey can be extrapolated to higher energy to match the intensity of the gamma-ray continuum as measured by HEAO-1 large field of view detectors, which implies that the continuum is a composite of contributions from a number of sources

    Locally Adaptive Shrinkage Priors for Trends and Breaks in Count Time Series

    Full text link
    Non-stationary count time series characterized by features such as abrupt changes and fluctuations about the trend arise in many scientific domains including biophysics, ecology, energy, epidemiology, and social science domains. Current approaches for integer-valued time series lack the flexibility to capture local transient features while more flexible models for continuous data types are inadequate for universal applications to integer-valued responses such as settings with small counts. We present a modeling framework, the negative binomial Bayesian trend filter (NB-BTF), that offers an adaptive model-based solution to capturing multiscale features with valid integer-valued inference for trend filtering. The framework is a hierarchical Bayesian model with a dynamic global-local shrinkage process. The flexibility of the global-local process allows for the necessary local regularization while the temporal dependence induces a locally smooth trend. In simulation, the NB-BTF outperforms a number of alternative trend filtering methods. Then, we demonstrate the method on weekly power outage frequency in Massachusetts townships. Power outage frequency is characterized by a nominal low level with occasional spikes. These illustrations show the estimation of a smooth, non-stationary trend with adequate uncertainty quantification.Comment: 31 pages, 6 figure

    Gamma-ray burst spectroscopy capabilities of the BATSE/GRO experiment

    Get PDF
    A scintillation spectrometer is included in each of the eight BATSE/GRO detector modules, resulting in all-sky coverage for gamma-ray bursts. The scientific motivation, design and capabilities of these spectrometers for performing spectral observations over a wide range of gamma-ray energies and burst intensities are described
    corecore